Divergence in spherical coordinates. Step 2: Lookup (or derive) the divergence formula for the ident...

Cylindrical Coordinates Transforms The forward and reverse

Solution: Solenoidal elds have zero divergence, that is, rF = 0. A computation of the divergence of F yields div F = cosx cosx= 0: Hence F is solenoidal. b. Find a vector potential for F. Solution: The vector eld is 2 dimensional, therefore we may use the techniques on p. 221 of the text to nd a vector potential.Although Cartesian coordinates are the most familiar and serve many purposes, they are not the only orthogfinal coordinate system that can be used to define a s ... C.2 The Divergence in Curvilinear Coordinates C.2 The Divergence in Curvilinear Coordinates. C.3 The Curl in Curvilinear Coordinates C.3 The Curl in Curvilinear Coordinates. C.4 ...Nov 16, 2022 · Spherical coordinates consist of the following three quantities. First there is ρ ρ. This is the distance from the origin to the point and we will require ρ ≥ 0 ρ ≥ 0. Next there is θ θ. This is the same angle that we saw in polar/cylindrical coordinates. Start with ds2 = dx2 + dy2 + dz2 in Cartesian coordinates and then show. ds2 = dr2 + r2dθ2 + r2sin2(θ)dφ2. The coefficients on the components for the gradient in this spherical coordinate system will be 1 over the square root of the corresponding coefficients of the line element. In other words. ∇f = [ 1 √1 ∂f ∂r 1 √r2 ∂f ∂θ 1 ...The other two coordinate systems we will encounter frequently are cylindrical and spherical coordinates. In terms of these variables, the divergence operation is significantly more complicated, unless there is a radial symmetry. That is, if the vector field points depends only upon the distance from a fixed axis (in the case of cylindrical ...These equations are used to convert from cylindrical coordinates to spherical coordinates. φ = arccos ( z √ r 2 + z 2) shows a few solid regions that are convenient to express in spherical coordinates. Figure : …9.6 Find the gradient of in spherical coordinates by this method and the gradient of in spherical coordinates also. There is a third way to find the gradient in terms of given coordinates, and that is by using the chain rule. We can first consider differential change of f in rectangular coordinates, ...The problem is the following: Calculate the expression of divergence in spherical coordinates r, θ, φ r, θ, φ for a vector field A A such that its contravariant …In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation.It is named after Carl Friedrich Gauss.It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's law for gravity is often more …The flow rate of the fluid across S is ∬ S v · d S. ∬ S v · d S. Before calculating this flux integral, let’s discuss what the value of the integral should be. Based on Figure 6.90, we see that if we place this cube in the fluid (as long as the cube doesn’t encompass the origin), then the rate of fluid entering the cube is the same as the rate of fluid exiting the cube. Find the divergence of the vector field, $\textbf{F} =<r^3 \cos \theta, r\theta, 2\sin \phi\cos \theta>$. Solution. Since the vector field contains two angles, $\theta$, and $\phi$, we know that we’re working with the vector field in a spherical coordinate. This means that we’ll use the divergence formula for spherical coordinates:Using these infinitesimals, all integrals can be converted to spherical coordinates. E.3 Resolution of the gradient The derivatives with respect to the spherical coordinates are obtained by differentiation through the Cartesian coordinates @ @r D @x @r @ @x DeO rr Dr r; @ @ D @x @ r DreO r Drr ; @ @˚ D @x @˚ r Drsin eO ˚r Drsin r ˚:Why can I suddenly use the divergence in spherical coordinates and apply it to a vector field in cartesian coordinates? $\endgroup$ – bluemoon. Jun 7, 2016 at 8:43However, we also know that F¯ F ¯ in cylindrical coordinates equals to: F¯ = (r cos θ, r sin θ, z) F ¯ = ( r cos θ, r sin θ, z), and the divergence in cylindrical coordinates is the following: ∇ ⋅F¯ = 1 r ∂(rF¯r) ∂r + 1 r ∂(F¯θ) ∂θ + ∂(F¯z) ∂z ∇ ⋅ F ¯ = 1 r ∂ ( r F ¯ r) ∂ r + 1 r ∂ ( F ¯ θ) ∂ θ ...Spherical coordinates are useful in analyzing systems that have some degree of symmetry about a point, such as the volume of the space inside a domed stadium or wind speeds in a planet’s atmosphere. A sphere that has Cartesian equation x 2 + y 2 + z 2 = c 2 x 2 + y 2 + z 2 = c 2 has the simple equation ρ = c ρ = c in spherical coordinates.Solution 1. Let eeμ be an arbitrary basis for three-dimensional Euclidean space. The metric tensor is then eeμ ⋅ eeν =gμν and if VV is a vector then VV = Vμeeμ where Vμ are the contravariant components of the vector VV. with determinant g = r4sin2 θ. This leads to the spherical coordinates system. where x^μ = (r, ϕ, θ).You certainly can convert V to Cartesian coordinates, it's just V = 1 x 2 + y 2 + z 2 x, y, z , but computing the divergence this way is slightly messy. Alternatively, you can use the formula for the divergence itself in spherical coordinates. If we write the (spherical) components of V as. div V = 1 r 2 ∂ r ( r 2 V r) + 1 r sin θ ∂ θ ( V ...a. The variable θ represents the measure of the same angle in both the cylindrical and spherical coordinate systems. Points with coordinates (ρ, π 3, φ) lie on the plane that forms angle θ = π 3 with the positive x -axis. Because ρ > 0, the surface described by equation θ = π 3 is the half-plane shown in Figure 5.7.13.Embed this widget ». Added Mar 30, 2013 by 3rdYearProject in Mathematics. Curl and Divergence of Vector Fields Calculator. Send feedback | Visit Wolfram|Alpha. Get the free "MathsPro101 - Curl and Divergence of Vector " widget for your website, blog, Wordpress, Blogger, or iGoogle.Figure 16.5.1: (a) Vector field 1, 2 has zero divergence. (b) Vector field − y, x also has zero divergence. By contrast, consider radial vector field ⇀ R(x, y) = − x, − y in Figure 16.5.2. At any given point, more fluid is flowing in than is flowing out, and therefore the “outgoingness” of the field is negative.The Station is a weekly newsletter dedicated to transportation. This week includes news and reviews of the Mercedes EQE and Arcimoto's FUV. The Station is a weekly newsletter dedicated to all things transportation. Sign up here — just click...Solution: Solenoidal elds have zero divergence, that is, rF = 0. A computation of the divergence of F yields div F = cosx cosx= 0: Hence F is solenoidal. b. Find a vector potential for F. Solution: The vector eld is 2 dimensional, therefore we may use the techniques on p. 221 of the text to nd a vector potential. Apr 25, 2020 · We know that the divergence of a vector field is : $$\mathbf{div\ V}= abla_i v^i$$ Notice that $\mathbf{V}$ is the vector field and $ abla_k v^i$ its covariant derivative, contracting it we obtain the scalar $ abla_i v^i$. Test the divergence theorem in spherical coordinates. Join me on Coursera: https://www.coursera.org/learn/vector-calculus-engineersLecture notes at http://ww...Learn how to calculate the divergence of a vector field in spherical coordinates using two definitions and two examples. See the explanations and comments from other users on this topic.of a vector in spherical coordinates as (B.12) To find the expression for the divergence, we use the basic definition of the divergence of a vector given by (B.4),and by evaluating its right side for the box of Fig. B.2, we obtain (B.13) To obtain the expression for the gradient of a scalar, we recall from Section 1.3 that in spherical ...For coordinate charts on Euclidean space, Curl [f, {x 1, …, x n}, chart] can be computed by transforming f to Cartesian coordinates, computing the ordinary curl and transforming back to chart. » Coordinate charts in the third argument of Curl can be specified as triples {coordsys, metric, dim} in the same way as in the first argument of ...In the activities below, you will construct infinitesimal distance elements (sometimes called line elements) in rectangular, cylindrical, and spherical coordinates. These infinitesimal distance elements are building blocks used to construct multi-dimensional integrals, including surface and volume integrals.This video is about The Divergence in Spherical CoordinatesWe know that the divergence of a vector field is : $$\mathbf{div\ V}= abla_i v^i$$ Notice that $\mathbf{V}$ is the vector field and $ abla_k v^i$ its covariant derivative, contracting it we obtain the scalar $ abla_i v^i$.This is the same result one would obtain, if one were to calculate the divergence in spherical coordinates using the formula. ∇ ⋅ E = 1 h r h θ h ϕ ∑ i = r, θ, ϕ ∂ i h r h θ h ϕ h i E i. Note that in the last formula the index takes on the (Greek) letters and not any numbers. Note also that in my first post, I assumed ∂ 1 = ∂ ...A Cartesian coordinate surface in this space is a coordinate plane; for example z = 0 defines the x-y plane. In the same space, the coordinate surface r = 1 in spherical coordinates is the surface of a unit sphere, which is curved. The formalism of curvilinear coordinates provides a unified and general description of the standard coordinate ...3. I am reading Modern Electrodynamics by Zangwill and cannot verify equation (1.61) [page 7]: ∇ ⋅ g(r) = g′ ⋅ ˆr, where the vector field g(r) is only nonzero in the radial direction. By using the divergence formula in Spherical coordinates, I get: ∇ ⋅ g(r) = 1 r2∂r(r2gr) + 1 rsinθ∂θ(gθsinθ) + 1 rsinθ∂ϕgϕ = 2 rgr + d ...This is because spherical coordinates are curvilinear coordinates, i.e, the unit vectors are not constant.. The Laplacian can be formulated very neatly in terms of the metric tensor, but since I am only a second year undergraduate I know next to nothing about tensors, so I will present the Laplacian in terms that I (and hopefully you) can understand.The flow rate of the fluid across S is ∬ S v · d S. ∬ S v · d S. Before calculating this flux integral, let’s discuss what the value of the integral should be. Based on Figure 6.90, we see that if we place this cube in the fluid (as long as the cube doesn’t encompass the origin), then the rate of fluid entering the cube is the same as the rate of fluid exiting the cube.You certainly can convert V to Cartesian coordinates, it's just V = 1 x 2 + y 2 + z 2 x, y, z , but computing the divergence this way is slightly messy. Alternatively, you can use the formula for the divergence itself in spherical coordinates. If we write the (spherical) components of V as. div V = 1 r 2 ∂ r ( r 2 V r) + 1 r sin θ ∂ θ ( V ...Find the divergence of the vector field, $\textbf{F} =<r^3 \cos \theta, r\theta, 2\sin \phi\cos \theta>$. Solution. Since the vector field contains two angles, $\theta$, and $\phi$, we know that we’re working with the vector field in a spherical coordinate. This means that we’ll use the divergence formula for spherical coordinates: Get the free "Spherical Integral Calculator" widget for your website, blog, Wordpress, Blogger, or iGoogle. Find more Mathematics widgets in Wolfram|Alpha.It correctly shows that the divergence is zero everywhere except the origin. However, unfortunately, it only says that the divergence is not defined at the origin and cannot provide more information, that is, $ abla \cdot \frac{1}{r^2} \hat{r}$ is actually positive infinity at the origin.Deriving the Curl in Cylindrical. We know that, the curl of a vector field A is given as, abla\times\overrightarrow A ∇× A. Here ∇ is the del operator and A is the vector field. If I take the del operator in cylindrical and cross it with A written in cylindrical then I would get the curl formula in cylindrical coordinate system.However, we also know that F¯ F ¯ in cylindrical coordinates equals to: F¯ = (r cos θ, r sin θ, z) F ¯ = ( r cos θ, r sin θ, z), and the divergence in cylindrical coordinates is the following: ∇ ⋅F¯ = 1 r ∂(rF¯r) ∂r + 1 r ∂(F¯θ) ∂θ + ∂(F¯z) ∂z ∇ ⋅ F ¯ = 1 r ∂ ( r F ¯ r) ∂ r + 1 r ∂ ( F ¯ θ) ∂ θ ...01‏/06‏/2013 ... We can calculate the divergence of a vector field expressed in cylindrical coordinates. We consider a vector V(r,θ,z)=MN(r,θ,z) whose origin is ...Spherical coordinates (r, θ, φ) as commonly used in physics: radial distance r, polar angle θ (), and azimuthal angle φ ().The symbol ρ is often used instead of r.. Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the …Spherical coordinates (r, θ, φ) as commonly used in physics: radial distance r, polar angle θ (), and azimuthal angle φ ().The symbol ρ is often used instead of r.. Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the …The divergence of a vector field is a scalar field that can be calculated using the given equation. In most cases, the components A_theta and A_phi will be zero, except for cases where there is a need to include terms related to theta or phi. This can be related to spherical symmetry, but further understanding is needed.f.Now if you have a vector field with the value →A at some point with spherical coordinates (r, θ, φ), then we can break that vector down into orthogonal components exactly as you do: Ar = →A ⋅ ˆr, Aθ = →A ⋅ ˆθ, Aφ = →A ⋅ ˆφ. Now consider the case where →A = →r. Then →A is in the exact same direction as ˆr, and ...The use of Poisson's and Laplace's equations will be explored for a uniform sphere of charge. In spherical polar coordinates, Poisson's equation takes the form: but since there is full spherical symmetry here, the derivatives with respect to θ and φ must be zero, leaving the form. Examining first the region outside the sphere, Laplace's law ...Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history ...The divergence operator is given in spherical coordinates in Table I at the end of the text. Use that operator to evaluate the divergence of the following vector functions. 2.1.6 * In spherical coordinates, an incremental volume element has sides r, r\Delta, r sin \Delta. Using steps analogous to those leading from (3) to (5), determine the ... Spherical coordinates, also called spherical polar coordinates (Walton 1967, Arfken 1985), are a system of curvilinear coordinates that are natural for describing positions on a sphere or spheroid. Define to be the azimuthal angle in the -plane from the x -axis with (denoted when referred to as the longitude),We can find neat expressions for the divergence in these coordinate systems by finding vectors pointing in the directions of these unit vectors that have 0 divergence. Then we write our vector field as a linear combination of these instead of as linear combinations of unit vectors. Consider a vector field that is directed radially outward from a point and which decreases linearly with distance; i.e., \({\bf A}=\hat{\bf r}A_0/r\) where \(A_0\) is a constant. In this case, the divergence is most easily computed in the spherical coordinate system since partial derivatives in all but one direction (\(r\)) equal zero.In the spherical coordinate system, we again use an ordered triple to describe the location of a point in space. In this case, the triple describes one distance and two angles. Spherical coordinates make it simple to describe a sphere, just as cylindrical coordinates make it easy to describe a cylinder.From Wikipedia, the free encyclopedia This article is about divergence in vector calculus. For divergence of infinite series, see Divergent series. For divergence in statistics, see Divergence (statistics). For other uses, see Divergence (disambiguation). Part of a series of articles about Calculus Fundamental theorem Limits ContinuityTest the divergence theorem in spherical coordinates. Join me on Coursera: https://www.coursera.org/learn/vector-calculus-engineersLecture notes at http://ww...Oct 12, 2023 · Spherical coordinates, also called spherical polar coordinates (Walton 1967, Arfken 1985), are a system of curvilinear coordinates that are natural for describing positions on a sphere or spheroid. Define theta to be the azimuthal angle in the xy-plane from the x-axis with 0<=theta<2pi (denoted lambda when referred to as the longitude), phi to be the polar angle (also known as the zenith angle ... In applications, we often use coordinates other than Cartesian coordinates. It is important to remember that expressions for the operations of vector analysis are different in different coordinates. Here we give explicit formulae for cylindrical and spherical coordinates. 1 Cylindrical Coordinates In cylindrical coordinates, This video is about The Divergence in Spherical Coordinatesand divergence under orthogonal coordinate systems are not easy to calculate and to remember. In this thesis the concepts such as manifold, tensors, differential forms and Lame coefficients are defined, and several differential-geometrical methods-differential form method, ... and spherical coordinates:Spherical Coordinates Rustem Bilyalov November 5, 2010 The required transformation is x;y;z!r; ;˚. In Spherical Coordinates ... The divergence in any coordinate system can be expressed as rV = 1 h 1h 2h 3 @ @u1 (h 2h 3V 1)+ @ @u2 (h 1h 3V 2)+ @ @u3 (h 1h 2V 3) The divergence in Spherical Coordinates is then rV = 110. I am trying to do exercise 3.2 of Sean Carroll's Spacetime and geometry. I have to calculate the formulas for the gradient, the divergence and the curl of a vector field using covariant derivatives. The covariant derivative is the ordinary derivative for a scalar,so. Dμf = ∂μf. Which is different from. ∂f ∂rˆr + 1 r ∂f ∂θˆθ ...Curl Theorem: ∮E ⋅ da = 1 ϵ0 Qenc ∮ E → ⋅ d a → = 1 ϵ 0 Q e n c. Maxwell’s Equation for divergence of E: (Remember we expect the divergence of E to be significant because we know what the field lines look like, and they diverge!) ∇ ⋅ E = 1 ϵ0ρ ∇ ⋅ E → = 1 ϵ 0 ρ. Deriving the more familiar form of Gauss’s law…. The Laplace equation is a fundamental partial differential equation that describes the behavior of scalar fields in various physical and mathematical systems. In cylindrical coordinates, the Laplace equation for a scalar function f is given by: ∇2f = 1 r ∂ ∂r(r∂f ∂r) + 1 r2 ∂2f ∂θ2 + ∂2f ∂z2 = 0. Here, ∇² represents the ...This expression only gives the divergence of the very special vector field \(\EE\) given above. The full expression for the divergence in spherical coordinates is obtained by performing a similar analysis of the flux of an arbitrary vector field \(\FF\) through our small box; the result can be found in Appendix 1.This formula, as well as similar formulas for other vector derivatives in ...https://www.therightgate.com/deriving-divergence-in-cylindrical-and-spherical/This article explains the step by step procedure for deriving the Divergence fo...I'm very used to calculating the flux of a vector field in cartesian coordinates, but I'm still getting tripped up when it comes to spherical or cylindrical coordinates. I was given the vector field: $\vec{F} = \frac{r\hat{e_r}}{(r^2+a^2)^{1/2}}$ 1) Express the cartesian COORDINATE in spherical coordinates. (Essentially, we're "pretending" the coordinate is a scalar function of spherical variables.) 2) Take the gradient of the coordinate, using the spherical form of the gradient. That just IS the unit vector of that coordinate axis. Hope this helps.Oct 1, 2017 · So the result here is a vector. If ρ ρ is constant, this term vanishes. ∙ρ(∂ivi)vj ∙ ρ ( ∂ i v i) v j: Here we calculate the divergence of v v, ∂iai = ∇ ⋅a = div a, ∂ i a i = ∇ ⋅ a = div a, and multiply this number with ρ ρ, yielding another number, say c2 c 2. This gets multiplied onto every component of vj v j. So the result here is a vector. If ρ ρ is constant, this term vanishes. ∙ρ(∂ivi)vj ∙ ρ ( ∂ i v i) v j: Here we calculate the divergence of v v, ∂iai = ∇ ⋅a = div a, ∂ i a i = ∇ ⋅ a = div a, and multiply this number with ρ ρ, yielding another number, say c2 c 2. This gets multiplied onto every component of vj v j.The vector (x, y, z) points in the radial direction in spherical coordinates, which we call the direction. Its divergence is 3. It can also be written as or as. A multiplier which will …Cylindrical coordinates A point plotted with cylindrical coordinates. Consider a cylindrical coordinate system ( ρ , φ , z ), with the z–axis the line around which the incompressible flow is axisymmetrical, φ the azimuthal angle and ρ the distance to the z–axis. Then the flow velocity components u ρ and u z can be expressed in terms of the Stokes stream …Mar 10, 2019 · However, we also know that $\bar{F}$ in cylindrical coordinates equals to: $\bar{F}= ... Divergence in spherical coordinates vs. cartesian coordinates. 3. Continuum Mechanics - Polar Coordinates. Vectors and Tensor Operations in Polar Coordinates. Many simple boundary value problems in solid mechanics (such as those that tend to appear in homework assignments or examinations!) are most conveniently solved using spherical or cylindrical-polar coordinate systems. The main drawback of using a polar ... Nov 10, 2020 · The basic idea is to take the Cartesian equivalent of the quantity in question and to substitute into that formula using the appropriate coordinate transformation. As an example, we will derive the formula for the gradient in spherical coordinates. Goal: Show that the gradient of a real-valued function \(F(ρ,θ,φ)\) in spherical coordinates is: Continuum Mechanics - Polar Coordinates. Vectors and Tensor Operations in Polar Coordinates. Many simple boundary value problems in solid mechanics (such as those that tend to appear in homework assignments or examinations!) are most conveniently solved using spherical or cylindrical-polar coordinate systems. The main drawback of using a polar ... So, given a point in spherical coordinates the cylindrical coordinates of the point will be, r = ρsinφ θ = θ z = ρcosφ r = ρ sin φ θ = θ z = ρ cos φ. Note as well from the Pythagorean theorem we also get, ρ2 = r2 +z2 ρ 2 = r 2 + z 2. Next, let’s find the Cartesian coordinates of the same point. To do this we’ll start with the ...Vector operators in curvilinear coordinate systems In a Cartesian system, take x 1 = x, x 2 = y, and x 3 = z, then an element of arc length ds2 is, ds2 = dx2 1 + dx 2 2 + dx 2 3 In a general system of coordinates, we still have x1. This time my question is based on this example Divergence theorem. I wanted to change the solution proposed by Omnomnomnom to cylindrical coordinates. ∭R ∇ ⋅ F(x, y, z)dzdydx = ∭R 3x2 + 3y2 + 3z2dzdy dx = ∭ R ∇ ⋅ F ( x, y, z) d z d y d x = ∭ R 3 x 2 + 3 y 2 + 3 z 2 d z d y d x =.This expression only gives the divergence of the very special vector field \(\EE\) given above. The full expression for the divergence in spherical coordinates is obtained by performing a similar analysis of the flux of an arbitrary vector field \(\FF\) through our small box; the result can be found in Appendix 12.19.I assumed that in order to do this I could just calculat the divergence in spherical coordinates, w... Stack Exchange Network Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.At divergent boundaries, the Earth’s tectonic plates pull apart from each other. This contrasts with convergent boundaries, where the plates are colliding, or converging, with each other. Divergent boundaries exist both on the ocean floor a...The vector (x, y, z) points in the radial direction in spherical coordinates, which we call the direction. Its divergence is 3. It can also be written as or as. A multiplier which will …Curvilinear coordinates: used to describe systems with symmetry. We will often find spherical symmetry or axial symmetry in the problems we will do this semester, and will thus use • Spherical coordinates • Cylindrical coordinates There are other curvilinear coordinate systems (e.g. ellipsoidal) that have special virtues, but we won’t get toI have been taught how to derive the gradient operator in spherical coordinate using this theorem. $$\vec{\nabla}=\hat{x}\frac{\partial}{\partial …Apr 30, 2020 · The divergence of a vector field is a scalar field that can be calculated using the given equation. In most cases, the components A_theta and A_phi will be zero, except for cases where there is a need to include terms related to theta or phi. This can be related to spherical symmetry, but further understanding is needed.f. Applications of Spherical Polar Coordinates. Physical systems which have spherical symmetry are often most conveniently treated by using spherical polar coordinates. Hydrogen Schrodinger Equation. Maxwell speed distribution. Electric potential of sphere.. Curl, Divergence, and Gradient in Cylindrical and SphThe divergence of a vector field V → in curvili Laplace operator. In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator ), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial ... sum of momentum of Jupiter's moons. QR code divergence calculator. curl calculator. handwritten style div (grad (f)) Give us your feedback ». Wolfram|Alpha brings expert-level knowledge and capabilities to the broadest possible range of people—spanning all professions and education levels. Developmental coordination disorder is a Find the divergence of the following vector fields. F = F1ˆi + F2ˆj + F3ˆk = FC1ˆeρ + FC2ˆeϕ + FC3ˆez = FS1ˆer + FS2ˆeθ + FS3ˆeϕ. So the divergence of F in cartesian,cylindical and spherical coordinates is: ∇ ⋅ F = ∂F1 ∂x + ∂F2 ∂y + ∂F3 ∂z = 1 ρ∂(ρFC1) ∂ρ + 1 ρ∂FC2 ∂ϕ + ∂FC3 ∂z = 1 r2∂(r2FS1) ∂r ...The formula $$ \sum_{i=1}^3 p_i q_i $$ for the dot product obviously holds for the Cartesian form of the vectors only. The proposed sum of the three products of components isn't even dimensionally correct – the radial coordinates are dimensionful while the angles are dimensionless, so they just can't be added. In this video, I show you how to use standard cov...

Continue Reading